an abstract image featuring gradient transitions between various shades of blue

IRIS Publications

A collection of IRIS-related publications by IRIS Members

Publications by IRIS Members

  1. 2024

    1. Knuples, U., Falenska, A., & Miletić, F. (2024). Gender Identity in Pretrained Language Models: An Inclusive Approach to Data Creation and Probing. In Y. Al-Onaizan, M. Bansal, & Y.-N. Chen (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2024 (pp. 11612--11631). Association for Computational Linguistics. https://aclanthology.org/2024.findings-emnlp.680
    2. Dönmez, E., Vu, T., & Falenska, A. (2024). Please note that I’m just an AI: Analysis of Behavior Patterns of LLMs in (Non-)offensive Speech Identification. In Y. Al-Onaizan, M. Bansal, & Y.-N. Chen (Eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (pp. 18340--18357). Association for Computational Linguistics. https://aclanthology.org/2024.emnlp-main.1019
    3. Sindermann, C. (2024). Relations between different components of group identification and types of social media political participation in the context of the Fridays for Future movement. Personality and Individual Differences, 230, 112773. https://doi.org/10.1016/j.paid.2024.112773
    4. Erhard, L., Hanke, S., Remer, U., Falenska, A., & Heiberger, R. H. (2024). PopBERT. Detecting Populism and Its Host Ideologies in the German Bundestag. Political Analysis. https://doi.org/10.1017/pan.2024.12
    5. Hillebrand, M. C., Sindermann, C., Montag, C., Wuttke, A., Heinzelmann, R., Haas, H., & Wilz, G. (2024). Salivary cortisol and alpha-amylase as stress markers to evaluate an individualized music intervention for people with dementia: feasibility and pilot analyses. BMC Research Notes, 17(1), Article 1. https://doi.org/10.1186/s13104-024-06904-7
    6. Brandenstein, N., Montag, C., & Sindermann, C. (2024). To Follow or Not to Follow: Estimating Political Opinion From Twitter Data Using a Network-Based Machine Learning Approach. Social Science Computer Review. https://doi.org/10.1177/08944393241279418
    7. Kaiser, J., & Falenska, A. (2024). How to Translate SQuAD to German? A Comparative Study of Answer Span Retrieval Methods for Question Answering Dataset Creation. In P. H. Luz de Araujo, A. Baumann, D. Gromann, B. Krenn, B. Roth, & M. Wiegand (Eds.), Proceedings of the 20th Conference on Natural Language Processing (KONVENS 2024) (pp. 134--140). Association for Computational Linguistics. https://aclanthology.org/2024.konvens-main.15
    8. Chen, H., Roth, M., & Falenska, A. (2024). What Can Go Wrong in Authorship Profiling: Cross-Domain Analysis of Gender and Age Prediction. In A. Faleńska, C. Basta, M. Costa jussà, S. Goldfarb-Tarrant, & D. Nozza (Eds.), Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP) (pp. 150--166). Association for Computational Linguistics. https://aclanthology.org/2024.gebnlp-1.9
    9. Go, P., & Falenska, A. (2024). Is there Gender Bias in Dependency Parsing? Revisiting ``Women’s Syntactic Resilience’’. In A. Faleńska, C. Basta, M. Costa jussà, S. Goldfarb-Tarrant, & D. Nozza (Eds.), Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP) (pp. 269--279). Association for Computational Linguistics. https://aclanthology.org/2024.gebnlp-1.17
    10. Costa jussà, M., Andrews, P., Basta, C., Ciro, J., Falenska, A., Goldfarb-Tarrant, S., Mosquera, R., Nozza, D., & Sánchez, E. (2024). Overview of the Shared Task on Machine Translation Gender Bias Evaluation with Multilingual Holistic Bias. In A. Faleńska, C. Basta, M. Costa jussà, S. Goldfarb-Tarrant, & D. Nozza (Eds.), Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP) (pp. 399--404). Association for Computational Linguistics. https://aclanthology.org/2024.gebnlp-1.26
    11. Faleńska, A., Basta, C., Costa jussà, M., Goldfarb-Tarrant, S., & Nozza, D. (Eds.). (2024). Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP). Association for Computational Linguistics. https://aclanthology.org/2024.gebnlp-1.0
    12. Babiker, A., Alshakhsi, S., Sindermann, C., Montag, C., & Ali, R. (2024). Examining the growth in willingness to pay for digital wellbeing services on social media: A comparative analysis. Heliyon, 10(11), Article 11. https://doi.org/10.1016/j.heliyon.2024.e32467
    13. Falenska, A., Vecchi, E. M., & Lapesa, G. (2024). Self-reported Demographics and Discourse Dynamics in a Persuasive Online Forum. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 14606--14621). ELRA and ICCL. https://aclanthology.org/2024.lrec-main.1272
    14. Sindermann, C., Löchner, N., Heinzelmann, R., Montag, C., & Scholz, R. W. (2024). The Revenue Model of Mainstream Online Social Networks and Potential Alternatives: A Scenario-Based Evaluation by German Adolescents and Adults. Technology in Society, 102569. https://doi.org/10.1016/j.techsoc.2024.102569
    15. Kannen, C., Sindermann, C., & Montag, C. (2024). On the willingness to pay for the messenger WhatsApp taking into account personality and sent/received messages. Heliyon, e28840. https://doi.org/10.1016/j.heliyon.2024.e28840
    16. Scholz, R. W., Köckler, H., Zscheischler, J., Czichos, R., Hofmann, K.-M., & Sindermann, C. (2024). Transdisciplinary knowledge integration PART II: Experiences of five transdisciplinary processes on digital data use in Germany. Technological Forecasting and Social Change, 199, 122981. https://doi.org/10.1016/j.techfore.2023.122981
    17. Sindermann, C., Montag, C., & Elhai, J. D. (2024). The Degree of Homogeneity Versus Heterogeneity in Individuals’ Political News Consumption - https://econtent.hogrefe.com/doi/abs/10.1027/1864-1105/a000417?journalCode=zmp. Journal of Media Psychology. https://doi.org/10.1027/1864-1105/a000417
    18. Hagendorff, T. (2024). Mapping the Ethics of Generative AI: A Comprehensive Scoping Review. ArXiv, 1–25. https://arxiv.org/abs/2402.08323
    19. Zermiani, F., Dhar, P., Strohm, F., Baumbach, S., Bulling, A., & Wirzberger, M. (2024). Individual differences in visuo-spatial working memory capacity and prior knowledge during interrupted reading. Frontiers in Cognition, 3. https://doi.org/10.3389/fcogn.2024.1434642
    20. Scholz, R. W., Zscheischler, J., Köckler, H., Czichos, R., Hofmann, K.-M., & Sindermann, C. (2024). Transdisciplinary knowledge integration – PART I: Theoretical foundations and an organizational structure. Technological Forecasting and Social Change, 202, 123281. https://doi.org/10.1016/j.techfore.2024.123281
    21. Hagendorff, T. (2024). Deception abilities emerged in large language models. Proceedings of the National Academy of Sciences, 121(24), Article 24. https://doi.org/10.1073/pnas.2317967121
    22. Meding, K., & Hagendorff, T. (2024). Fairness Hacking: The Malicious Practice of Shrouding Unfairness in Algorithms. Philosophy & Technology, 37(1), Article 1.
    23. Alshakhsi, S., Babiker, A., Sindermann, C., Al-Thani, D., Montag, C., & Ali, R. (2024). Willingness to pay for digital wellbeing features on social network sites: a study with Arab and European samples. Frontiers in Computer Science, 6, 1387681. https://doi.org/10.3389/fcomp.2024.1387681
    24. Jalali Farahani, F., Hanke, S., Dima, C., Heiberger, R. H., & Staab, S. (2024). Who is targeted? Detecting social group mentions in online political discussions. Companion Publication of the 16th ACM Web Science Conference, 24–25. https://doi.org/10.1145/3630744.3658412
    25. Wirzberger, M., Bareiß, L., Herbst, V., Stock, A., & Kembitzky, J. (2024). Performance Expectancy Benefits Acceptance Towards Digital Self-Control Support. In SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4924933
    26. Berberena, T., & Wirzberger, M. (2024). The Impact of User Momentary Emotional State on Trust in a Faulty Chatbot. In SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4924934
  2. 2023

    1. Williams, J. R., Sindermann, C., Yang, H., Montag, C., & Elhai, J. D. (2023). Latent profiles of problematic smartphone use severity are associated with social and generalized anxiety, and fear of missing out, among Chinese high school students. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 17(5), Article 5. https://doi.org/10.5817/CP2023-5-7
    2. Zhang, Y., Yao, S., Sindermann, C., Rozgonjuk, D., Zhou, M., Riedl, R., & Montag, C. (2023). Investigating autistic traits, social phobia, fear of COVID-19, and internet use disorder variables in the context of videoconference fatigue. Telematics and Informatics Reports, 11, 100067. https://doi.org/10.1016/j.teler.2023.100067
    3. Fanton, N., Falenska, A., & Roth, M. (2023). How-to Guides for Specific Audiences: A Corpus and Initial Findings. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop), 321--333. https://doi.org/10.18653/v1/2023.acl-srw.46
    4. Vetter, D., Amann, J., Bruneault, F., Coffee, M., Düdder, B., Gallucci, A., Gilbert, T. K., Hagendorff, T., van Halem, I., Hickman, E., Hildt, E., Holm, S., Kararigas, G., Kringen, P., Madai, V. I., Wiinblad Mathez, E., Tithi, J. J., Westerlund, M., Wurth, R., & Zicari, R. V. (2023). Lessons Learned from Assessing Trustworthy AI in Practice. Digital Society, 2(3), Article 3.
    5. Hagendorff, T. (2023). Information Control and Trust in the Context of Digital Technologies. In C. Eisenmann, K. Englert, C. Schubert, & E. Voss (Eds.), Varieties of Cooperation (pp. 189--201). Springer Fachmedien Wiesbaden.
    6. Hagendorff, T., Bossert, L. N., Tse, Y. F., & Singer, P. (2023). Speciesist bias in AI: how AI applications perpetuate discrimination and unfair outcomes against animals. AI and Ethics, 3(3), Article 3.
    7. Bossert, L., & Hagendorff, T. (2023). The ethics of sustainable AI: Why animals (should) matter for a sustainable use of AI. Sustainable Development, 31(5), Article 5.
    8. Hagendorff, T., Fabi, S., & Kosinski, M. (2023). Human-like intuitive behavior and reasoning biases emerged in large language models but disappeared in ChatGPT. Nature Computational Science, 1--9.
    9. Ðula, I., Berberena, T., Keplinger, K., & Wirzberger, M. (2023). Hooked on artificial agents: a systems thinking perspective. Frontiers in Behavioral Economics, 2, 1223281. https://doi.org/10.3389/frbhe.2023.1223281
    10. Masur, P. K., Hagendorff, T., & Trepte, S. (2023). Challenges in Studying Social Media Privacy Literacy. In S. Trepte & P. K. Masur (Eds.), The Routledge Handbook of Privacy and Social Media (pp. 110--124). Routledge.
    11. Erhard, L., Hanke, S., Remer, U., Falenska, A., & Heiberger, R. H. (2023). PopBERT. Detecting populism and its host ideologies in the German                  Bundestag. CoRR, abs/2309.14355. https://doi.org/10.48550/ARXIV.2309.14355
    12. Erhard, L., & Heiberger, R. (2023). Regression and Machine Learning. In J. Skopek (Ed.), Research Handbook on Digital Sociology (pp. 129--144). Edward Elgar Publishing. https://www.e-elgar.com/shop/gbp/research-handbook-on-digital-sociology-9781789906752.html
    13. Ðula, I., Berberena, T., Kepliner, K., & Wirzberger, M. (2023). Hooked on artificial agents: a systems thinking perspective. Frontiers in Behavioral Economics, 2, 1223281. https://doi.org/10.3389/frbhe.2023.1223281
    14. Runstedler, C. (2023). Alchemy and Exemplary Poetry in Middle English Literature. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-26606-5
    15. Hagendorff, T., & Danks, D. (2023). Ethical and methodological challenges in building morally informed AI systems. AI and Ethics, 3(2), Article 2.
    16. Hagendorff, T., & Fabi, S. (2023). Why we need biased AI: How including cognitive biases can enhance AI systems. Journal of Experimental & Theoretical Artificial Intelligence, 1--14.
    17. Hagendorff, T., & Fabi, S. (2023). Methodological reflections for AI alignment research using human feedback. ArXiv, 1--9.
    18. Hagendorff, T. (2023). AI ethics and its pitfalls: not living up to its own standards? AI and Ethics, 3(1), Article 1.
    19. Sindermann, C., Scholz, R. W., Löchner, N., & Montag, C. (2023). The revenue model of mainstream social media: advancing discussions on social media based on a European perspective derived from interviews with scientific and practical experts. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2023.2278292
To the top of the page